
Mathematica Moravica
Vol. 7 (2003), 23–32

INFINITELY DISTRIBUTIVE ELEMENTS IN
POSETS

Vera Lazarević∗ and Andreja Tepavčević

Abstract. Infinitely distributive and codistributive elements
in posets are studied. It is proved that an element a in a poset P
has these properties if and only if the image of a has the corre-
sponding properties in the Dedekind MacNeille completion of P .
An application of the order theoretical results to a poset of weak
congruences is presented.

1. Preliminaries

1.1 Special elements in lattices

An element a of a lattice L is infinitely distributive iff for every
family {xi|i ∈ I} ⊆ L:

a ∨ (
∧
i∈I

xi) =
∧
i∈I

(a ∨ xi).

An element a which satisfies the dual law is called infinitely codis-
tributive.

Elements satisfying the corresponding laws with finite families I usually
are called distributive (or codistributive).

In paper [20] the relationship between infinite and finite distributive
(codistributive) elements has been investigated.

Element a ∈ L is infinitely codistributive if and only if the mapping
ma : L −→ a ↓ defined by ma(x) = a∧x is a complete lattice homomorphism
(homomorphism which is compatible with all suprema and infima). This ho-
momorphism induces a complete congruence on L [18]. Moreover, if lattice L
is algebraic, classes of the induced congruence always have the top elements.
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The dual complete homomorphism connected with the completely dis-
tributive elements will be denoted by na.

For a poset (P,≤) and X ⊆ P we introduce the following notions and
notations.

Let LP (X) be the set of all lower bounds of X in P , and UP (X) the set
of all upper bounds:

LP (X) = {y ∈ P | y ≤ x for all x ∈ X},
UP (X) = {y ∈ P | x ≤ y for all x ∈ X}.

In no confusion can occur, subscripts will be omitted and we shall write
L(X) and U(X).

If X = {x1, . . . xn} is finite then instead of L(X) and U(X), we also use
the notation L(x1, . . . , xn) and U(x1, . . . , xn). L(X ∪ Y ) will be denoted by
L(X,Y ), and similarly U(X ∪ Y ), by U(X,Y ).

Throughout the paper DM(P ) denotes the Dedekind-McNeille comple-
tion of P . In this context, G(P ) is the sublattice of DM(P ) generated by
the set {L(x) | x ∈ P}. This lattice is called, according to [6], characteristic
lattice of poset P .

Let eP be a natural mapping from a poset P to its Dedekind-McNeille
completion of P .

eP : P → DM(P ) defined by eP (x) := L(x).

A mapping f : P → Q is ω-stable [6] if there is a lattice homomorphism
f∗ : G(P )→ G(Q) such that eQ ◦ f = f∗ ◦ eP .

An equivalence on P is defined to be a congruence on P if it is a
kernel of a ω-stable mapping on P [6].

Theorem 1. [6] A relation on a poset P is a congruence on P if and
only if it corresponds to a restriction of a congruence on lattice G(P ). �

We call a relation on a poset P complete congruence if it is a re-
striction of a complete congruence relation on the lattice DM(P ) (complete
congruences are equivalence relations compatible with arbitrary suprema and
infima).

Throughout the paper, infima and suprema in P are denoted by infP

and supP , and infima and suprema in lattices DM(P ) and G(P ) are denoted
by ∧ and ∨. The ordering relation in the poset and the related Dedekind
MacNeille completion is denoted by the same symbol ≤.

The following lemma is a consequence of the fact that mapping eP is
an order embedding.
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Lemma 1. Let P be a poset and DM(P ) its Dedekind MacNeille com-
pletion. Then for a ∈ P , X ⊆ P ,

a ∈ UP (X) if and only if eP (a) ≥
∨

x∈X

eP (x),

where
∨

is the supremum in the DM(P ). �

The dual lemma is also valid.

1.2 Identities in posets

Identities on posets are introduced and studied in several papers (see
e.g. [8], [12], [13]).

A partially ordered set P is distributive [8] if for all x, y, z ∈ P ,

L(x,U(y, z)) = L(U(L(x, y), L(x, z))).

It is proved by Lamerová and Rachunek ( [8]) that this condition is
equivalent with its dual:

U(x,L(y, z)) = U(L(U(x, y), U(x, z))).

It turned out that the distributivity of a poset is connected with the
distributivity of the corresponding characteristic lattice.

Theorem 2. (Niederle [12]): Poset P is distributive if and only if it
is a doubly dense subset of a distributive lattice. �

Theorem 3. (Niederle [13]): Poset P is distributive if and only if the
lattice G(P ) is distributive. �

2. Special elements in posets

A large class of special elements in posets has been introduced and
studied in [23] and [24].

In this section we introduce notions of infinitely distributive and codis-
tributive elements in posets. We characterize these elements by infinite (co)
distributivity in the lattice DM(P ).

Element a in a poset P is infinitely distributive if and only if for
every family {xi | i ∈ I} of elements from P , U(a,L({xi | i ∈ I})) =
U(L(

⋃
i∈I U(a, xi))).

Element a in a poset P is infinitely codistributive if for every family
{xi | i ∈ I} of elements from P , L(a,U({xi | i ∈ I})) = L(U(

⋃
i∈I L(a, xi))).

Theorem 4. Element a ∈ P is infinitely distributive in P if and only
if eP (a) is an infinitely distributive element in the lattice DM(P ).
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Proof. Let a ∈ P and let eP (a) be an infinitely distributive element
in DM(P ). Recall that P is a double dense subset of DM(P ). Let

t ∈ U(a,L({xi | i ∈ I})).
Then, t ≥ a and for any x ∈ L{xi | i ∈ I}, t ≥ x. Therefore, eP (t) ≥ eP (a) and
eP (t) ≥ eP (x) for all x ∈ L{xi | i ∈ I}. In lattice DM(P ), eP (x) ≤ eP (xi),
for all i ∈ I, and therefore eP (x) ≤

∧
i∈I eP (xi). Hence, eP (t) ≥ eP (x) for all

x ≤
∧

i∈I xi. Since
∧

i∈I e(xi) =
∨
{e(x) | e(x) ≤

∧
i∈I e(xi)}, we have that

eP (t) ≥
∧

i∈I e(xi). Further on, eP (t) ≥ eP (a) ∨
∧

i∈I eP (xi) =
∧

i∈I(eP (a) ∨
eP (xi)) by the infinite distributivity of eP (a) in DM(P ).

Let p ∈ L(
⋃

i∈I U(a, xi)). Then, p ≤ q for every q ∈
⋃

i∈I U(a, xi),
and by the similar arguments as above, eP (p) ≤ eP (a) ∨ ep(xi). Therefore,
eP (p) ≤

∧
i∈I(eP (a) ∨ eP (xi)). Hence, eP (p) ≤ eP (t), and p ≤ t. Hence,

t ∈ U(L(
⋃

i∈I U(a, xi))).
Therefore, we proved U(a,L{xi | i ∈ I}) ⊆ U(L(

⋃
i∈I U(a, xi))). The

other inclusion is always fulfilled.
Now, we suppose that a is an infinitely distributive element of P . P is

a double dense subset in DM(P ).
Firstly, we prove that eP (a) ∨

∧
i∈I eP (xi) =

∧
i∈I(eP (a) ∨ eP (xi)) is

satisfied for all xi ∈ P .
Let y ∈ P . Then,

eP (y) ≥
∧

i∈I(eP (a) ∨ eP (xi)) if and only if
eP (y) ∈ U(

∧
i∈I(eP (a) ∨ eP (xi))) if and only if

y ∈ U(L(
⋃

i∈I U(a, xi))) if and only if
y ∈ U(a,L{xi | i ∈ I}) if and only if
eP (y) ∈ U(eP (a),

∧
i∈I eP (xi)) if and only if

eP (y) ≥ eP (a) and eP (y) ≥ ∧i∈IeP (xi) if and only if
eP (y) ≥ eP (a) ∨

∧
i∈I eP (xi).

If {xi | i ∈ I} is a family of elements from DM(P ), then every xi is
an infimum of a family of images of elements from P , xi = ∧j∈JieP (zj), for
zj ∈ P .

Therefore,

eP (a) ∨
∧
i∈I

xi = eP (a) ∨
∧
i∈I

∧
j∈Ji

eP (zj) =
∧
i∈I

∧
j∈Ij

(eP (a) ∨ eP (zj)) ≥

≥
∧
i∈I

(eP (a) ∨
∧
j∈Ij

eP (zj)) =
∧
i∈I

(eP (a) ∨ xj).

The other inequality is always satisfied. �

The dual theorem is also satisfied.
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Theorem 5. Element a ∈ P is infinitely codistributive if and only if
eP (a) is an infinitely codistributive element in the lattice DM(P ). �

By the Lemma 1 in [18] we obtain following consequences:

Corollary 1. Element a ∈ P is infinitely distributive if and only if
relation θa on P , defined by

xθay if and only if eP (x) ∨ eP (a) = eP (y) ∨ eP (a)

is a complete congruence on poset P . �

Corollary 2. Element a ∈ P is infinitely codistributive if and only if
relation θa on P , defined by

xθay if and only if eP (x) ∧ eP (a) = eP (y) ∧ eP (a)

is a complete congruence on poset P . �

2.1 Weak congruence lattice

In this section we recall the notion of weak congruences which will serve
as a justification of introduction of the terms of distributive and codistributive
elements in posets.

Let A = (A,F ) be an algebra. Let CwA be a set of all weak congruences
(symmetric and transitive and compatible relations) on A. (CwA,⊆) is an
algebraic lattice. It is a lattice of all congruences on all subalgebras together
with the empty set in case when there is no nullary operation in the similarity
type.

The diagonal relation ∆ is always an infinitely codistributive element
in CwA. The filter ∆↑ is the congruence lattice ConA, and the ideal ∆↓ is
isomorphic with the subuniverse lattice SubA.

The top elements of the congruence classes determined by the homo-
morphism m∆ : x �→ x ∧∆ are squares of subuniverses.

An algebra A has the congruence intersection property (CIP) iff
∆ is a distributive element in the lattice CwA.

An algebra A has the infinite congruence intersection property (*CIP)
if and only if for an arbitrary family of weak congruences {ρi|i ∈ I},

∆ ∨ (
∧
i∈I

ρi) =
∧
i∈I

(∆ ∨ ρi).
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2.2 Weak congruences under different order

Let CwA be a set of all weak congruences of an algebra A, and ∆ the
diagonal relation.

Let ρ, θ be two weak congruences, and ρ ∈ ConC, θ ∈ ConB. We intro-
duce a new operation on CwA:

ρ ∗ θ = (B2 ∧ ρ) ∨ (C2 ∧ θ),

and ∅ ∗ θ = ∅.
Use of such an operation, which is also a graphical composition was

proposed by M. Ploščica in [17].

In the sequel, (CwA,∧,∨) or (CwA,⊆) is a weak congruence lattice of
an algebra A, and (CwA,≤∗) is the poset of weak congruences, where the
relation ≤∗ is defined by the operation ∗:

ρ ≤∗ θ if and only if ρ ∗ θ = θ.

Theorem 6. [9] Let CwA be a weak congruence lattice, and ∗ and ≤∗
be defined as above. Then:

(i) ∆ ≤∗ ρ, for all ρ ∈ CwA.
(ii) If ρ, θ ∈ [∆B, B

2], then ρ ∗ θ = ρ ∨ θ, for B ∈ SubA.
(iii) ρ ⊆ θ if and only if ρ ≤∗ θ, for ρ, θ ∈ [∆B , B

2].
(iv) The interval [∆B , B

2]∗ is a lattice ConB, for B ∈ SubA.
(v) B2 ∗ C2 = B2 ∧ C2.
(vi) B2 ≤∗ C2 if and only if C2 ⊆ B2.
(vii) A2 ≤∗ ρ if and only if ρ = B2, for ρ ∈ ConB.
(viii) CwA is equal to the union of intervals [∆B , B

2]∗, for all B ∈ SubA.
(ix) The filter A2↑∗ is anti-isomorphic with SubA.
(x) If ρ ∈ ConB, then ρ ∗A2 = B2. �

Example 1. A lattice of weak congruences (CwG,⊆) for a four-element
Klein’s group G is given in Figure 2 a). A poset of weak congruences (CwG,≤∗)
for the same group is given in Fig. 2 b).
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3. Special elements in poset of weak congruences

Let A be an algebra, and (CwA,≤∗) the poset of weak congruences.
Being the bottom element, the diagonal relation ∆ is always an infinitely

distributive and infinitely codistributive element in this poset.

Lemma 2. In the poset (CwA,≤∗), for every ρ ∈ ConB, B ∈ SubA

sup{A2, ρ} = B2.

Proof. Since A2 ∗ ρ = B2, B2 is an upper bound for elements A2 and
ρ. Let θ ∈ CwA be another upper bound, i.e., let A2 ≤∗ θ and ρ ≤∗ θ. Let
θ ∈ ConC, for C ∈ SubA. Hence,

θ = A2 ∗ θ = (A2 ∧ θ) ∨ (A2 ∧ C2) = θ ∨ C2 = C2,

and

C2 = ρ ∗ C2 = (B2 ∧ C2) ∨ (ρ ∧ C2) = B2 ∧ C2.

Thus, C2 ⊆ B2 and C ≤ B. By the Theorem 6. (vi), B2 ≤∗ C2 and B2

is the required supremum. �

Lemma 3. In the poset (CwA,≤∗), for every family {Bi∈SubA| i∈I}

inf
i∈I

Bi
2 =

∨
i∈I

Bi
2,

where the operation ∨ at the right is the supremum in the weak congruence
lattice.
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Proof. By Theorem 6.,
∨

i∈I Bi
2 is a maximim lower bound for ele-

ments {Bi|i ∈ I}. Suppose that ρ ∈ ConD is another lower bound for elements
Bi for i ∈ I: ρ ≤∗ Bi, for all i ∈ I. Hence, Bi ⊆ D, for all i ∈ I and thus∨

i∈I Bi
2 ⊆ D. Therefore, ρ∗(

∨
i∈I Bi

2) = (ρ∧(
∨

i∈I Bi
2))∨(D2∧(

∨
i∈I Bi

2)) =
(
∨

i∈I Bi
2). Hence,

∨
i∈I Bi

2 is the required infimum. �

Theorem 7. A2 is an infinitely distributive element in poset (CwA,≤∗).
Proof. Let {ρi | i ∈ I} be a family of weak congruences, where ρi ∈

ConBi for Bi ∈ SubA.
By Lemma 2., sup{A2, ρi} = B2

i for each i ∈ I, where suprema are
considered under the ordering ≤∗.

Hence, U(A2, ρi) = B2
i ↑, for every i ∈ I. By Lemma 3

U

(
L

(⋃
i∈I

U(A2, ρi)

))
=

(∨
i∈I

Bi

)
↑ .

On the other hand, let ρ belong to U(A2, L({ρi | i ∈ I})). Since ρ ≥ A2,
and by Theorem 6. (vii), ρ = D2, for some subalgebra D. D2 ≥ θ for any
θ ∈ L({ρi | i ∈ I})). We prove that ∆S ≤ ρi for any i ∈ I, where S =

∨
i∈I Bi.

Indeed,

∆S ∗ ρi = (S2 ∧ ρi) ∨ (∆S ∧B2
i ) = ρi ∨∆Bi = ρi,

and thus ∆S ≤∗ ρi. Hence, ∆S ∈ L({ρi | i ∈ I})) and D2 ≥∗ ∆S, therefore
(D2 ∧∆S) ∨ (D2 ∧ S2) = D2 and D2 ≤ S2, and D ≤ S in subalgebra lattice.
By , ρ = D2 ∈ (

∨
i∈I Bi) ↑ and

U
(
A2, L({ρi | i ∈ I})

)
⊆ U

(
L

(⋃
i∈I

U(A2, ρi)

))
.

The other inclusion is always satisfied. �

Since A2 is an infinitely distributive element, we obtain the natural
decomposition to congruence classes of the poset (CwA,≤∗).

Corollary 3. Each block of the congruence on poset (CwA,≤∗) in-
duced by ρ �→ sup{ρ,A2} is a congruence lattice of a subalgebra B, where ρ
belongs to ConB. Therefore, poset (CwA,≤∗) is the union of intervals ConB
which are the congruences lattices on all the subalgebras of A. �
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